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Orthogonal Complement

• The orthogonal complement of a nonempty vector 
set S is denoted as S⊥ (S perp).

• S⊥ is the set of vectors that are orthogonal to every 
vector in S

S = Rn  S⊥ = {0}

𝑆⊥ = 𝑣: 𝑣 ⋅ 𝑢 = 0, ∀𝑢 ∈ 𝑆

S = {0}  S⊥ = RnW

W⊥



Orthogonal Complement

• The orthogonal complement of a nonempty vector 
set S is denoted as S⊥ (S perp).

• S⊥ is the set of vectors that are orthogonal to every 
vector in S

𝑊 =
𝑤1

𝑤2

0
|𝑤1, 𝑤2 ∈ R

𝑉 =
0
0
𝑣3

|𝑣3 ∈ R = W⊥?

V  W⊥:

W⊥  V:

for all v  V and w  W, v • w = 0 

since e1, e2  W, all z = [ z1 z2 z3 ]T

 W⊥ must have z1 = z2 = 0

𝑆⊥ = 𝑣: 𝑣 ⋅ 𝑢 = 0, ∀𝑢 ∈ 𝑆



Properties of 
Orthogonal Complement

Is 𝑆⊥ always a subspace?

For any nonempty vector set  S, 𝑆𝑝𝑎𝑛 𝑆 ⊥ = 𝑆⊥

Let W be a subspace, and B be a basis of W.

𝐵⊥ = 𝑊⊥

What is  𝑆 ∩ 𝑆⊥? Zero vector



Properties of 
Orthogonal Complement
• Example:

For W = Span{u1, u2}, where u1 = [ 1  1  −1  4 ]T and u2 =[ 1 −1  1  2 ]T





i.e., v = [ x1 x2 x3 x4 ]T satisfies

is a basis for W⊥.

v  W⊥ if and only if u1 • v = u2 • v = 0

W⊥ = Solutions of “Ax=0” = Null A



Properties of 
Orthogonal Complement
• For any matrix A

(Col A)⊥ = (Row AT) ⊥ = Null AT .

𝑅𝑜𝑤 𝐴 ⊥ = 𝑁𝑢𝑙𝑙 𝐴

C𝑜𝑙 𝐴 ⊥ = 𝑁𝑢𝑙𝑙 𝐴𝑇

v  (Row A)⊥ For all w  Span{rows of A}, w • v = 0 

 Av = 0.

For any subspace W of Rn 𝑑𝑖𝑚𝑊 + 𝑑𝑖𝑚𝑊⊥ = 𝑛

rank nullity



Unique

For any subspace W of Rn 𝑑𝑖𝑚𝑊 + 𝑑𝑖𝑚𝑊⊥ = 𝑛

For every vector u,

u  =  w  +  z   (unique)

∈ 𝑊 ∈ 𝑊⊥
W

W⊥ u

w

z

Basis: 𝑤1, 𝑤2, ⋯ ,𝑤𝑘 Basis: 𝑧1, 𝑧2, ⋯ , 𝑧𝑛−𝑘

Basis for Rn

0
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Orthogonal Projection

∈ 𝑊⊥

Orthogonal Projection Operator:

The function 𝑈𝑊 𝑢 is the 
orthogonal projection of u on W.

𝑧

u  =  w  +  z   (unique)

∈ 𝑊 ∈ 𝑊⊥

orthogonal 
projection 

Linear?



∈ 𝑊⊥
𝑧

Orthogonal Projection

w in subspace W is 
“closest” to vector u.

z is always orthogonal to 
all vectors in W.

“closest”

Always orthogonal



Closest Vector Property

• Among all vectors in subspace W, the vector closest 
to u is the orthogonal projection of u on W

W0

 w, w, w − w  W.

 (u − w) • (w − w) = 0.

 u − w2

= (u − w) + (w − w)2

= u − w2 + w − w2

> u − w2
w = UW(u)

u

−u w
'−u w

w’w

The distance from a vector u to a subspace W is the distance 
between u and the orthogonal projection of u on W



Orthogonal Projection Matrix

0
v = UW(v)

w = UW(u)

u

W

z = u - w

Orthogonal 
Projection Matrix Pw

It has standard matrix.

= 𝑃𝑊𝑢

= 𝑃𝑊𝑣

Orthogonal projection operator is linear.
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Orthogonal Projection on a line

• Orthogonal projection of a vector on a line

v: any vector 
u: any nonzero vector on L
w: orthogonal projection of 

v onto L , w = cu
z: v − w

L

u

v

w
z

Distance from tip of v to L :

𝑣 − 𝑤 ∙ 𝑢 = 𝑣 − 𝑐𝑢 ∙ 𝑢 = 𝑣 ∙ 𝑢 − 𝑐𝑢 ∙ 𝑢 = 𝑣 ∙ 𝑢 − 𝑐 𝑢 2

𝑐 =
𝑣 ∙ 𝑢

𝑢 2 𝑤 = 𝑐𝑢 =
𝑣 ∙ 𝑢

𝑢 2
𝑢

z
𝑧 ∙ 𝑢 = 0

=0

= 𝑣 −
𝑣 ∙ 𝑢

𝑢 2
𝑢𝑧 = 𝑣 − 𝑤



Orthogonal Projection

• Example:

𝑐 =
𝑣 ∙ 𝑢

𝑢 2

𝑤 = 𝑐𝑢 =
𝑣 ∙ 𝑢

𝑢 2
𝑢

L is y = (1/2)x

𝑣 =
4
1

𝑢 =
2
1

L

u

v

w
z

z

𝑧 ∙ 𝑢 = 0



Proof: Let u  Rn and w = UW(u).  
Since W = Col C, w = Cv for some v  Rk

and u − w W⊥

 0 = CT(u − w) = CTu − CTw = CTu − CTCv.

 CTu = CTCv.

 v = (CTC)−1CTu and w = C(CTC)−1CTu as CTC is invertible.

Orthogonal Projection Matrix

• Let C be an n x k matrix whose columns form a 
basis for a subspace W 

𝑃𝑊 = 𝐶 𝐶𝑇𝐶 −1𝐶𝑇 n x n 



Orthogonal Projection Matrix

• Let C be an n x k matrix whose columns form a 
basis for a subspace W 

𝑃𝑊 = 𝐶 𝐶𝑇𝐶 −1𝐶𝑇 n x n 

Proof: We want to prove that CTC has independent columns.
Suppose CTCb = 0 for some b.

 bTCTCb = (Cb)TCb = (Cb) • (Cb) = Cb2 = 0.

 Cb = 0  b = 0 since C has L.I. columns.

Thus CTC is invertible.

Let C be a matrix with linearly independent columns. 
Then 𝐶𝑇𝐶 is invertible.



Orthogonal Projection Matrix

• Example: Let W be the 2-dimensional subspace of 
R3 with equation x1 − x2 +2x3 = 0.

W has a basis

1 2

1 , 0

0 1

 −    
    
    
        

𝑃𝑊 = 𝐶 𝐶𝑇𝐶 −1𝐶𝑇
1 2

1 0

0 1

− 
 
 
  

𝐶 =

5 1 2
1

1 5 2
6

2 2 2

− 
 
 
 − 

𝑃𝑊 = 𝑃𝑊

1
3
4

=
0
4
2
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Solution of Inconsistent 
System of Linear Equations
• Suppose Ax = b is an inconsistent system of linear equations. 

• b is not in the column space of A

• Find vector z minimizing ||Az − b||

0

b

||Az − b||

||Ax − b||

Ax

W = Col A
Az = PWb



Least Square Approximation

data pairs:
x1 → y1

x2 → y2


xi → yi



Find the “least-square line” y = a0 + a1x to best fit the data

predict e.g.

(今天股票,明天股票)

(今天PM2.5,明天PM2.5)

Regression



Least Square Approximation

Find a0 and a1 minimizing E

𝑦 = 𝑎0 + 𝑎1𝑥

𝑥𝑖 , 𝑦𝑖

𝑥𝑖 , 𝑎0 + 𝑎1𝑥𝑖

𝑦𝑖 − 𝑎0 + 𝑎1𝑥𝑖

Error Vector:



Least Square Approximation

Find a0 and a1 minimizing E

Error Vector:

E = y − (a0v1 + a1v2)2 = y − Ca2



Least Square Approximation

E =  y − Ca2
Find a minimizing

find a such that Ca = PWy

B = {v1, v2} (L.I.)

Ca is the orthogonal projection 
of y on W = Span B . 



Example 1

Prediction: 
if the rough weight is 2.65, 
the finished weight is 
0.056 +0.745(2.65) = 2.030.

 y = 0.056 + 0.745x.

(estimation)



Least Square Approximation

• Best quadratic fit: using y = a0 + a1x + a2x2 to fit the data 
points (x1, y1), (x2, y2), , (xn, yn)

y = a0 + a1x + a2x2

Find a0, a1 and a2 minimizing E

𝑒 =

𝑦1 − 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥1
2

𝑦2 − 𝑎0 + 𝑎1𝑥2 + 𝑎2𝑥2
2

⋮
𝑦𝑛 − 𝑎0 + 𝑎1𝑥𝑛 + 𝑎2𝑥𝑛

2



Least Square Approximation

• Best quadratic fit: using y = a0 + a1x + a2x2 to fit the data 
points (x1, y1), (x2, y2), , (xn, yn)

Find a0, a1 and a2 minimizing E

𝑒 =

𝑦1 − 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥1
2

𝑦2 − 𝑎0 + 𝑎1𝑥2 + 𝑎2𝑥2
2

⋮
𝑦𝑛 − 𝑎0 + 𝑎1𝑥𝑛 + 𝑎2𝑥𝑛

2



Best fitting polynomial of any desired maximum degree may be
found with the same method.

𝑦 = 101.00 + 29.77𝑥 − 16.11𝑥2

y = a0 + a1x + a2x2



Multivariable Least Square 
Approximation

http://www.palass.org/publications/newsletter/palaeomath-101/palaeomath-
part-4-regression-iv

𝑥𝐴 𝑥𝐵

𝑦𝐴

𝑦𝐴 = 𝑎0 + 𝑎1𝑥𝐴 + 𝑎2𝑥𝐵


